Mutually Isospectral Riemann Surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isospectral Riemann surfaces

© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

Isospectral Graphs and Isospectral Surfaces

In memory of Hubert Pesce In this paper, we investigate the following question: to what extent is there a converse to the Theorem of Sunada Su] in the context of graphs? Our experience in dealing with the question, \Can one hear the shape of a drum?" is that the many facets of this question turn out to be surprisingly delicate. The present instance is no exception. We will rst present a partial...

متن کامل

Riemann Surfaces

Riemann introduced his surfaces in the middle of the 19th century in order to “geometrize” complex analysis. In doing so, he paved the way for a great deal of modern mathematics such as algebraic geometry, manifold theory, and topology. So this would certainly be of interest to students in these areas, as well as in complex analysis or number theory. In simple terms, a Riemann surface is a surf...

متن کامل

Crystallography and Riemann Surfaces

The level set of an elliptic function is a doubly periodic point set in C. To obtain a wider spectrum of point sets, we consider, more generally, a Riemann surface S immersed in C2 and its sections (“cuts”) by C. We give S a crystallographic isometry in C2 by defining a fundamental surface element as a conformal map of triangular domains and S as its extension by reflections in the triangle edg...

متن کامل

Noncommutative Riemann Surfaces

We compactify M(atrix) theory on Riemann surfaces Σ with genus g > 1. Following [1], we construct a projective unitary representation of π1(Σ) realized on L (H), with H the upper half–plane. As a first step we introduce a suitably gauged sl2(R) algebra. Then a uniquely determined gauge connection provides the central extension which is a 2–cocycle of the 2nd Hochschild cohomology group. Our con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1998

ISSN: 0001-8708

DOI: 10.1006/aima.1998.1750